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ABSTRACT 

Physical phenomena have non-stationary nature that cannot be analyzed by conventional 

numerical methods. The Hilbert-Huang transform is a relatively new way to look at non-

stationary signals by introducing the new concept of instantaneous frequency. This paper 

presents some remarks on how to compute the instantaneous frequency of a non-

stationary signal, by the means of the Hilbert-Huang transform and with the empirical 

AM-FM decomposition. 
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1. Introduction 

Until recent years the concept of frequency had a 

definition based on the Fourier theorem. But as 

several studies had shown [1], the Fourier transform 

can be applied only to a handful of signals, that are 

linear, periodic or stationary; otherwise, the resulting 

spectrum rarely makes physical sense. In most cases 

data retrieved from physical systems will not meet the 

conditions needed by the Fourier transform.  

The method we have studied is based on the 

empirical mode decomposition (EMD) which 

generates a set of intrinsic mode functions (IMF) 

from which an “instantaneous frequency” can be 

computed. This is practical for nonlinear and non-

stationary signals. The notion of the instantaneous 

frequency has been the base of many discussions. 

There are two problems in understanding the idea 

behind the instantaneous frequency: the first one has 

its roots in the Fourier analysis, which describes 

signals as sums of sine and cosine waves, existing 

through the whole time span of the data. In non-

stationary signals a constant frequency wouldn’t 

make sense. The other problem is represented by the 

fact that instantaneous frequency cannot be defined in 

a unique way. 

One of the methods capable of computing the 

instantaneous frequency is the Hilbert-Huang 

transform, but this has quite severe limitations with 

respect to the correctness of the given result. Another 

approach, the empirical AM-FM decomposition, on 

the other hand, overcomes these limitations as will be 

seen in following sections. 

2. The empirical mode decomposition  

Signals can be decomposed in many ways by 

applying different mathematical transformations on 

them. Well known examples are the Wavelet 

transform and the Fourier transform. Generally these 

transforms are used to offer information about the 

frequency data contained by the signal. A relatively 

new idea is to find a signal’s instantaneous frequency, 

which is somewhat different from the frequency 

concept known from the Fourier analysis. The 

instantaneous frequency can only be calculated for 

monocomponent signals or intrinsic mode functions 

[1]. As such, a monocomponent (or IMF) is defined 

as a signal that has the number of local maxima equal 

to the number of local minima or differ at most by 

one and the upper and lower envelopes of the signal 

are symmetric with respect to zero. 

The empirical mode decomposition is a method 

that decomposes any signal into intrinsic mode 

functions. There is no analytical definition for this 

method, for it is described by an iterative algorithm. 

Upper and lower envelopes are constructed for the 

original signal with the help of cubic spline 

approximation and their mean is computed. Then, the 

mean of the envelopes is subtracted from the original 

signal. The process of extracting an IMF from the 

signal is called sifting [5], [7], [10], [12]. The sifting 

stops when a sum of differences is smaller than a 

predefined value. This is like a convergence test and 

it was developed by Huang [1]: 
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𝑆𝐷𝑘 =

 |ℎ𝑘−1 𝑡 − ℎ𝑘(𝑡)|2𝑇
𝑡=0

 ℎ𝑘−1
2 (𝑡)𝑇

𝑡=0

 (1) 

where ℎ𝑘−1 and ℎ𝑘  are consecutive approximations of 

the IMF. The predefined value for this sum of 

differences was chosen as 0.2. Once the sifting 

process is done, the resulting IMF is subtracted from 

the signal and the whole process is repeated with the 

remaining residue until this residue is a monotonic 

function [1], [2]. 

 

3. Computing the instantaneous frequency 

with the Hilbert transform 

Once the IMFs of a signal are calculated with the 

empirical mode decomposition, a corresponding 

analytical signal can be constructed for each of them 

using the Hilbert transform. There are a number of 

conditions imposed by the Bedrosian and Nuttall 

theorems [4], [8] for a signal to be Hilbert 

transformable. An IMF that results from the EMD 

does not satisfy all these conditions. However, the 

erroneous behavior is not always significant, or it is 

not present in many cases. Equation (2) presents the 

form of the analytical signal of an IMF 

 𝑧 𝑡 = 𝑥 𝑡 + 𝑖𝑦 𝑡 = 𝑎(𝑡)𝑒𝑖𝜑 (𝑡) (2) 

 

where 𝑦(𝑡) is the Hilbert transform of the IMF 𝑥(𝑡): 

 
𝑦 𝑡 =

1

𝜋
𝑃. 𝑉.  

𝑥(𝜏)

𝑡 − 𝜏
𝑑𝜏

∞

−∞

 (3) 

 

Having the analytical signal of an IMF, the 

instantaneous phase and instantaneous frequency can 

be computed as: 

 
𝜑 𝑡 = 𝑎𝑡𝑎𝑛

𝑦(𝑡)

𝑥(𝑡)
 (4) 

 

 
𝜔 𝑡 =

𝑑𝜑(𝑡)

𝑑𝑡
 (5) 

 

The instantaneous amplitude is: 

 𝑎 𝑡 =  𝑥2 𝑡 + 𝑦2(𝑡) (6) 

 

4. Computing the instantaneous frequency 

with the empirical AM-FM decomposition 

Because of the limitations presented in the 

previous section, new methods had been developed to 

compute the instantaneous frequency. Such a method 

is the empirical AM and FM decomposition. 

AM and FM decomposition may be applied to 

IMF signals and it follows a normalization pattern. 

The separation of the AM and the FM component of 

an IMF can be realized uniquely by an iterative 

algorithm. Thus, a cubic spline is used to approximate 

the absolute value of the IMF. Using this envelope, 

𝑒1(𝑡), the original IMF is normalized: 

 
𝑦1 𝑡 =

𝑥(𝑡)

𝑒1(𝑡)
 (7) 

 

The result is then approximated again with a cubic 

spline and the normalization goes on:  

 
𝑦𝑛 𝑡 =

𝑦𝑛−1(𝑡)

𝑒𝑛(𝑡)
 (8) 

 

until 𝑦𝑛(𝑡) has its values in the interval [−1;  1]. This 

final 𝑦𝑛(𝑡) represents the FM part of the original 

IMF. The AM part is then computed by: 

 
𝐴 𝑡 =

𝑥 𝑡 

𝐹 𝑡 
 (9) 

 

 where 𝐴(𝑡) is the AM part of the IMF and 𝐹(𝑡) is the 

FM part of the IMF. 

As the original signal can be approximated by: 

 𝑥 𝑡 = 𝐴 𝑡 𝑐𝑜𝑠𝜑 𝑡 , (10) 

 

in [1] has  been shown that 𝐴(𝑡) is the AM part of the 

signal, while 𝑐𝑜𝑠𝜑(𝑡) represents the FM part. 

Considering FM to be a cosine-like signal, we can 

calculate its quadrature, 𝑄(𝑡), so that [2] 

 𝐹2 𝑡 + 𝑄2 𝑡 = 1 (11) 

 

This leads us to the fact that 𝑄(𝑡) is a sine-like signal. 

Using these two signals, i.e. the FM signal and its 

quadrature, we are able to compute the instantaneous 

phase of the original IMF: 

 
𝜑 𝑡 = 𝑎𝑡𝑎𝑛

𝑄(𝑡)

𝐹(𝑡)
 (12) 

 

The inverse tangent function gives information about 

both the value of the angle and the quadrant in which 

it is situated, so the phase is fully defined. After 

unwrapping the phase, the instantaneous frequency 

can be found using:  

 
𝜔 𝑡 =

𝑑𝜑(𝑡)

𝑑𝑡
 (13) 

 

5. Results 

The presented methods were applied to an ECG 

signal selected from the MIT-BIH arrhythmia 

database, as shown on fig. 1.  

The result of the empirical mode decomposition 

provided us six intrinsic mode functions (fig. 2), on 

which both the Hilbert transform and AM-FM 

decomposition had been applied. 

Presented on fig. 3 is the second IMF and its 

respective instantaneous phase and instantaneous 

frequency computed with the help of the Hilbert 

transform. Figure 4 shows the results obtained with 

the AM-FM decomposition. Although the two 

methods refer to the instantaneous frequency and 

phase, the results are different. The AM-FM method 

offers more detailed information about frequency 

taking into account every little change in the IMF, 

regardless of its amplitude. The spikes that are 

present in both figures are the side effect of the 

derivative used to compute the instantaneous 

frequency. By smoothing the instantaneous phase, 

one can get a “cleaner” result. Figure 5 presents the 

3D representation of the time, instantaneous 

frequency and amplitude of the second IMF. 



 

30 

 

This representation facilitates the discovery of hidden patterns and energy distribution through the IMF. This 

can be useful to differentiate real life signals from computer-generated ones. 

 
Fig. 1 The original signal 

 

 
Fig. 2 The intrinsic mode functions of the original signal 

 

 
Fig. 3 The 2nd IMF and its instantaneous phase and instantaneous frequency as  

computed with the Hilbert transform 
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Fig. 4 The 2nd IMF and its instantaneous amplitude, instantaneous phase and 

 instantaneous frequency as computed with the AM-FM decomposition 

 

 
Fig. 5 The joint representation of time, instantaneous frequency and amplitude  

of the 2nd IMF computed with the AM-FM decomposition 

 

6.   Conclusions 

The frequency in Hilbert spectrum gives another 

meaning to the concept of “frequency” widely known 

from the Fourier theory. The Fourier representation of 

a frequency 𝜔, means a component of a sine wave 

being present through the whole data. One frequency 

component 𝜔 means only that, in the signal it has 

appeared at some location. 

On the other hand, the Hilbert spectrum represents 

a joint amplitude – frequency - time distribution. The 

DC term of Fourier spectrum is present because of the 

non-zero mean, concentrating a considerable amount 

of energy into a single point, while the marginal 

spectrum of an IMF gives a continuous distribution of 

energy through the time span of the data. Thus, the 

Fourier spectrum offers no meaningful information if 

the data is not stationary. 

Even the Hilbert transform can’t provide always a 

meaningful instantaneous frequency if the Fourier 

transform of the analyzed signal doesn’t have only 

positive frequency values. 
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